Chordality Properties and Hyperbolicity on Graphs
نویسنده
چکیده
Let G be a graph with the usual shortest-path metric. A graph is δ-hyperbolic if for every geodesic triangle T , any side of T is contained in a δ-neighborhood of the union of the other two sides. A graph is chordal if every induced cycle has at most three edges. In this paper we study the relation between the hyperbolicity of the graph and some chordality properties which are natural generalizations of being chordal. We find chordality properties that are weaker and stronger than being δ-hyperbolic. Moreover, we obtain a characterization of being hyperbolic on terms of a chordality property on the triangles.
منابع مشابه
Generalized Chordality, Vertex Separators and Hyperbolicity on Graphs
A graph is chordal if every induced cycle has exactly three edges. A vertex separator set in a graph is a set of vertices that disconnects two vertices. A graph is δ-hyperbolic if every geodesic triangle is δ-thin. In this paper, we study the relation between vertex separator sets, certain chordality properties that generalize being chordal and the hyperbolicity of the graph. We also give a cha...
متن کاملGraphs of low chordality
The chordality of an undirected graph G, which is not acyclic, is defined as the length of the longest induced cycle in it. The chordality of an acyclic graph is defined to be 0. We use Cl (l ≥ 3) to denote a cycle of length l. An induced cycle is called a hole. A hole is an odd hole if its length is odd and is an even hole otherwise. Odd-chordality of a graph is the length of the longest odd h...
متن کاملOn strictly Chordality-k graphs
Strictly Chordality-k graphs (SC k graphs) are graphs which are either cycle free or every induced cycle is exactly k, for some fixed k, k ≥ 3. Note that k = 3 and k = 4 are precisely the Chordal graphs and Chordal Bipartite graphs, respectively. In this paper, we initiate a structural and an algo-rithmic study of SC k , k ≥ 5 graphs.
متن کاملOn the Complexity of Connected (s, t)-Vertex Separator
We show that minimum connected (s, t)-vertex separator ((s, t)-CVS) is Ω(log2− n)-hard for any > 0 unless NP has quasi-polynomial Las-Vegas algorithms. i.e., for any > 0 and for some δ > 0, (s, t)-CVS is unlikely to have δ.log2− n-approximation algorithm. We show that (s, t)-CVS is NPcomplete on graphs with chordality at least 5 and present a polynomial-time algorithm for (s, t)-CVS on bipartit...
متن کاملObstructions to a small hyperbolicity in Helly graphs
It is known that for every graph G there exists the smallest Helly graph H(G) into which G isometrically embeds (H(G) is called the injective hull of G) such that the hyperbolicity of H(G) is equal to the hyperbolicity of G. Motivated by this, we investigate structural properties of Helly graphs that govern their hyperbolicity and identify three isometric subgraphs of the King-grid as structura...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 23 شماره
صفحات -
تاریخ انتشار 2016